
PiRo
an agile and holistic approach to formalize specifications

Peter Nicke
PiRo Systems Engineering GmbH

Amselweg 7, 71032 Böblingen

date of release: 10/04/2016





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Visions and advantages . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Basic concepts and elements of PiRo 7

2.1 PiRo Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 PiRo Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 PiRo Action Language . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 PiRo Syntax 13

3.1 The PiRo::Phrase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 The Phrases Class . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 The Phrases Argument . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 The Phrases System and Subsystem . . . . . . . . . . . . . . . 16

3.1.4 The maximum Phrase . . . . . . . . . . . . . . . . . . . . . . 17

3.2 PiRo::Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Wait[] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 PiRo::RequirementsTemplate . . . . . . . . . . . . . . . . . . . . . . . 19



iv Contents

4 PiRo Semantic und Translation 21

4.1 The PIRO Phrase Content . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Translation To Other Languages . . . . . . . . . . . . . . . . . . . . . 22

5 ISO/IEC/IEEE 29119 conformity 25

6 ISO/IEC/IEEE 29148-2011 conformity 27

7 Outlook 29

7.1 Parameter Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.2 Other Requirements templates . . . . . . . . . . . . . . . . . . . . . . 29

7.3 Automatic Translation of UML diagrams . . . . . . . . . . . . . . . . 29

A Appendix 31

A.1 Recommended PiRo Classes . . . . . . . . . . . . . . . . . . . . . . . 32

A.1.0.1 General . . . . . . . . . . . . . . . . . . . . . . . . 32

A.1.0.2 UML . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.1.0.3 ECUs in automotive environment . . . . . . . . . . . 33

List of figures 35

Literaturverzeichnis 37

Index 39



1. Introduction

Today development projects are getting more and more complex. Complex in terms of
software structure, amount of functionality, number of stakeholders and especially in
terms of the amount of software communication partners (e.g. other software modules,
ECUs and systems).

To handle this complexity a couple of measures were introduced. For example:

• agile methods for project management (e.g. SCRUM)

• software platform architectures and design rules (e.g. AUTOSAR in the automo-
tive industry)

• .....

Nevertheless, only 14% of all the IT projects are successful. 57% are critical leading
to big time and budget overrun and 29% are failing completely (consolidated numbers
2002-2010<5>). The three most important reasons for an unsuccessful project are:

1. missing preliminary work of stakeholders and users

2. incomplete or unclear requirements



2 1. Introduction

3. frequently changing requirements

One of the most important but mostly undervalued part of development is requirements
engineering. Clear requirements are one of the 3 most important criteria for a successful
project<5>.
A NASA study shows, that with an increased requirements engineering budget of 5-10%
of the overall project budget the cost overrun was diminished from 150% to 25%<7>.

Definition of Requirements Engineering according to IREB<4>

The requirements engineering is a systematic and disciplined approach for specification and
management of requirements with the following objectives:

• know the relevant requirements, get consensus between the stakeholders, document the
requirements in compliance to given standards and manage requirements systematically

• understand and document the stakeholders wishes

• specify and document the requirements to minimize the risk to deliver a system which
not fulfills the stakeholders wishes and needs

Without proper system objectives, system and context boundaries with corresponding
interfaces and requirements, nobody knows exactly how to implement the product. Ex-
periences have shown that a lot of time and money are wasted caused by wrong im-
plementations due to bad or missing requirements. In IT projects 60% of all failures
are caused by analysis failures. Whereas only 40% are referable to implementation is-
sues<3>.

Once the requirements are available it comes down to test specifications to confirm the
described functionality. Experience shows that often a huge amount of man power is
spend but the product still shows wrong behavior which was not discovered by the tests.
Such problems often lead to extra bug fixing releases or cost expensive postponing of
product releases.
Insufficient test results are caused by various reasons like underestimated test know how
or missing test platforms and test equipment.



3

But one of the major problem is based on bad test case definitions. Test cases often
do not represent the corresponding requirement in correct form. Without a suitable test
case definition it is not possible to get satisfying test results.

Today most of the requirements and/or test cases are either written with

• proses (natural language)

• complex description languages (UML, CafeObj, CASL, TTCN-3 ...).

Prose leads often to ambiguous descriptions with doubtful results whereas the several
description languages are quite difficult to understand for non-professionals.
With prose it is also not possible to get automated test scripts for HiL and other applica-
tions. This leads to additional workload to generate automated test scripts.

PIRO

PIRO is a solution which combines the legibility with machine readability.
PIRO uses the approach of keyword driven test cases<2>.
PIRO defines a simple syntax and unambiguous semantic by using predefined phrases
which are close to our natural language.

PIRO is a new agile approach to express each specification as abstractly as possible

while making it precise enough to interpret and execute it automatically.

The legibility can only be achieved by using a big number of predefined phrases like
it is known by a natural language (instead of a very few instructions like known from
different modeling languages). Therefore, a new approach by using a "living" database
with phrases is introduced. Every stakeholder is able to define new phrases.
As PIRO provides a specific syntax and semantic, an automatic translation in different
languages (natural language, HiL scripts, ...) is possible. The dictionary is also part of
the database.



4 1. Introduction

1.1 Motivation
The idea of PIRO was built based on test case specifications. The daily experience with
persons who were writing test cases and persons using them to write HiL scripts have
shown a big amount of unnecessary and inefficient communication effort. Especially
when it comes to different cultures and different development locations (with sometimes
different time zones). Observations have shown a couple of causing issues:

1. Test cases are not precise and often ambiguous

2. A lot of unnecessary information was used

3. Different languages

4. "Chinese whispers issue" 1.a

5. Implicit knowledge

Those problems can be avoided by standardizations. Out of this PIRO was born.

1.2 Visions and advantages
The following premises were crucial to get the standardization. The enumeration is
sorted by priority

1. User friendly

1.1 legibility

1.2 intuitively useable, especially for new users

2. Machine readability

3. Unified grammar (syntax and semantics) from requirement to test case

4. Fast and correct method to get specifications written
1.aChange of content on the way from requirement to test case to test script



1.2. Visions and advantages 5

5. Independence of

5.1 Specification and test platforms (DOORs, DanTe, ALM, ....)

5.2 Phases of the concrete development cycle (e.g. valid for all levels of the
V-model)

6. Scalability

6.1 Type of user (customers, suppliers, service partner, ...)

6.2 Arbitrary independent projects

With the machine readability the following features can also be realized:

• translation in nearly arbitrary languages and test platforms

• tool supported requirement and test case definition

Other advantages which result out of the described implementation are:

• The approach of keyword driven testing leads to the possibility to start writing test
cases without a corresponding test system implementation (e.g. HiL).

• With the automated translation into HiL test scripts it is possible to define a unique
structure, labeling and annotation.

• A consistent traceability between test case and HiL implementation can be real-
ized.

• The requirements and test cases get a measurable quality level. A proper metric
can be defined without the necessity of having results in the form of implementa-
tion failures like it is required in existing metrics.

• traceability between requirement and test case allow an automatic consistency
checkup



6 1. Introduction



2. Basic concepts and elements of PiRo



8 2. Basic concepts and elements of PiRo

PIRO provides 3 different mechanisms to get the best specifications in class.

• PiRo::Phrases

• PiRo::Actions

• PiRo::RequirementTemplates

The most important elements are the PiRo::Phrases. The Actions and Requirements
Templates complete PIRO to a holistic approach which fulfills the ISO/IEC/IEEE-29148<1>

quality characteristics for requirements.

In the simplest case a PiRo::Phrase represents a parameter, a timer or another object. But
a PIRO phrase can also cover complex functions, activities or signal definition which
may be composed from other PIRO phrases. PiRo::phrases are used by domain experts
to assemble PIRO requirements or PIRO test cases.
Using PIRO phrases brings the following advantages:

Reusability and Single Source

Often complex definitions are used multiple times within a specification. With PIRO the
definition can be done in one particular place. Within the corresponding requirements
the predefined phrase is used. This makes the work with specifications much more
efficient.

Clear specifications

Less words are making sentences easier to read! Sentences are optimal legible with less
than 9 words<6>. If only a small phrase is used instead of a complex definition the
specification get much more comprehensibly.

Easy Change Management 1

Often parameters, timers, signals etc. are used for more than one requirement or test
case. With the use of PIRO phrases the change is minimally invasive as only one partic-
ular requirement has to be changed instead of all the corresponding requirements or test
cases.



9

Easy Change Management 2

One of the major quality problems in IT projects is the high frequency of requirements
changes. This often leads to changed requirements on system level but the necessary
changes on software level or within the corresponding test specifications are missing or
delayed. As the changes often only affect simple signal and parameter definitions an
automatic and prompt translation with PIRO phrases can solve such issues.

UML Action Languages

Today the model based testing becomes more and more important. Therefore, a model
and its artifacts has to be described by triggers, guards, effects and different other param-
eters (depending on the diagram type). When it comes to the automation well defined
expressions are needed. PIRO can also be used to define those artifacts.

Domain invariance

Test specifications can be written without the need to do this domain specific (test plat-
form specific). Afterwards the domain independent test specification can easily be trans-
lated to specific test platforms by using a PIRO dictionary where the phrases get trans-
lated domain specific. The number of needed test cases can be reduced dramatically.

Traceability

A big problem for software quality is the traceability between requirements, test speci-
fications and test scripts. With a responsible requirements engineer the different specifi-
cations are linked together. But this does not ensure the correspondence of the content.
By using PIRO phrases and an automatic translation it can be ensured that the same
behavior (e.g. signal definition) is used for every specification.

Runtime enhancement

Amount of test cases may also be consolidated by an automatic synergy check of all
automatically generated test cases



10 2. Basic concepts and elements of PiRo

2.1 PiRo Test Cases

As the most of the test case documents are divided by

• precondition

• action

• expectation

or a similar structure, there is no need for a requirement template. A verb is optional
and can be used to improve the flow of reading. Therefore, test specifications can be
handled only by using PIRO phrases. The following example shows a simple test case
to test if a car drives backwards when a reverse gear is engaged.

Table 2.1: PIRO test case

TextCase ID precondition action expectation
PiRo-0815 1) car::engine[running] DrivingDirection[backward]

2) GearShift[R]
3) AccelPedal[pressed]

With a proper database the test case can automatically be translated into the different
test platform specific languages. Besides the particular HiL systems with their specific
domain language a translation is also possible into driver instructions (table 2.2) or bus
signals (table 2.3):

Table 2.2: PIRO test case translated into driver instructions

TextCase ID precondition action expectation
DI-0815 1) start engine The car drives backward

2) engage reverse gear
3) press accelerater pedal



2.2. PiRo Requirements 11

Table 2.3: PIRO test case translated into bus signal (signals are not real)

TextCase ID precondition action expectation
DI-0815 1) EngineStat[running] RollingDirect_FL[Back]

2) GearShift_Target[R]
3) AccelPedalWay[>10]

2.2 PiRo Requirements

On the contrary to the test specifications, requirements often do not have a predefined
structure. Therefore, the PiRo::RequirementsTemplate and a PIRO verb is used. A very
simple proposal: It is required that a car drives backward if the engine is running, a
reverse gear is engaged and the acceleration pedal is pressed.

Table 2.4: PIRO Requirements

Req ID Requirement Comp
Car-2016 If car::engine[running] AND car

if GearShift[R] AND
if AccelPedal[pressed], the system shall drive DrivingDirection[backward]

Here the PIRO verb "drive" and the PIRO phrases "car::engine[running]", "GearShift[R]"
and "AccelPedal[pressed]" were used. As the requirement is functional, it can automat-
ically be translated into a PIRO test case and afterward into different domain specific
test languages.

2.3 PiRo Action Language

PiRo can also be used to get a well defined Action Language. This is the first step to
automatically test State Charts. This chapter is not final!



12 2. Basic concepts and elements of PiRo



3. PiRo Syntax



14 3. PiRo Syntax

3.1 The PiRo::Phrase

PIRO uses predefined keywords to define the phrases. Such a phrase is a compound
string without any blanks. To get a phrase still easy legible a proper syntax is needed. It
is recommended to use the CamelCase method3.a or the separation by an underscore to
define a PiRo::Phrase.

In general a PIRO phrase describes an entity3.b whereby an entity is at least characterized
by its name.

PIRO - Definition: minimal PIRO -Phrase

The minimal phrase is given by the entity itself.

For example if the specification often refers to an particular "wake up time" the follow-
ing phrase can be defined to get the benefits mentioned above:

WakeUpTime

3.1.1 The Phrases Class

To get the specification structured and easy to read often the class of the entity (the
object type) is used. In this case the Entity is prefixed by its Class whereby they are
separated by two double dots.

3.aCamelCase (also camel caps or medial capitals) is the practice of writing compound words or phrases
such that each word or abbreviation begins with a capital letter. Camel case may start with a capital or,
especially in programming languages, with a lowercase letter.

3.bAn entity is something that exists in itself, actually or potentially, concretely or abstractly, physically
or not. But there is no need of material existence. In particular, abstractions and legal fictions are usually
regarded as entities



3.1. The PiRo::Phrase 15

PIRO - Definition: class of the PIRO -Phrase

class::Entity

For example if a parameter "wake up time" should be described, the following PIRO

-Phrase can be used:

param::WakeUpTime

With the Class it is also possible to define the characteristics of an entity. For example
if the parameter "wake up time" should be implemented as SCN codable parameter the
following phrase can be used:

SCN::WakeUpTime

With a corresponding requirement that all entities which are defined in class "SCN" have
to be implemented as SCN parameter within the software.
A list of recommended classes can be found at Page 32.

3.1.2 The Phrases Argument

If it is needed to define a concrete Argument for an entity this can be done in the fol-
lowing form:

PIRO - Definition: Argument of the PIRO -Phrase

entity[argument]

The Argument is optional.
For example if the SCN parameter "wake up time" should be set to "1000", the following
PIRO -Phrase can be used:



16 3. PiRo Syntax

WakeUpTime[1000]

• It is allowed to use more than two ore more arguments combined by logical oper-
ators and relations

– AND

– OR

– NOT

– <,>,=,>=, >=;

• If a flank from one state to another should be described the conjunction "TO" is
used (e.g. itf_FR::Ignition[IGN_ON TO IGN_START])

3.1.3 The Phrases System and Subsystem

Often the PIRO phrase is not unique or it is not clear in which component the entity is
handled. Therefore, it can be extended by the systems in which the entity exists.

System and Subssystem of the PIRO -Phrase

system::subsystem::entity

For example if the SCN parameter "wake up time" refers to the system "ESP", the
following PIRO -Phrase can be used:

ESP::WakeUpTime

And if this is still not sufficient the following proposal is also possible:

Mercedes::ESP::WakeUpTime

In principle it is allowed to define the phrase with more than two systems. But as the
legibility was one of the major PIRO objectives it is not recommended.



3.2. PiRo::Action 17

3.1.4 The maximum Phrase

All the described elements can be combined together in the following form:

PIRO - Definition: maximum PIRO -Phrase

class::system::subsystem::entity[argument]

For example if the SCN parameter "wake up time" of the system "ESP" within the
mercedes car should be set to "1000", the following PIRO -Phrase can be used:

SCN::Mercedes::ESP::WakeUpTime[1000]

It is important to use the class at the beginning of the phrase to improve the legibility.

3.2 PiRo::Action
Once some PIRO phrases are defined the question will come up how to handle them
to get a legibly requirement. Therefore PIRO introduces Actions (What verbs are in a
sentence that are PIRO actions in the specification). PIRO is able to handle free defined
Actions like known by the phrases.
Mostly Actions are not needed to define a required behavior as they are implicit given
by the particular phrase. But it is urgently recommended to use them because:

• The requirement get only legible with Actions / Verbs like known by a natural
language

• The driver instructions which are potentially translated out of requirements get
comprehensible

For example if the FlexRay signal "GearShift" should be set to a particular signal value
(for example to "R") the Action "set" can be used:



18 3. PiRo Syntax

set itf_FR::GearShift[R]

Other recommended Actions are "show" (for GUI relevant Phrases), "drive", "request"
and a lot more.

3.2.1 Wait[]
When it comes to test cases and relevant timing definitions often a well defined time is
necessary to specify the exact behavior.
For example it is often required to define a time between two inputs or to wait for
an particular event before starting a new action. This can be done by using the "wait[]"
Action. The argument can either be a timing definition or an external event which should
be described by a PIRO phrase.

Timing definition

If the tester should wait some milliseconds between two actions, the "wait[]" action can
be used in the following form:

TextCase ID preconditionaction expectation
PiRo-0815 1) car::engine[running] DrivingDirection[backward]

2) GearShift[R]
3) wait[2000]
4) AccelPedal[pressed]

The default unit are milliseconds.

Event

If the tester should wait for an event between to actions, the "wait[]" action can be used
in the following form:

TextCase ID preconditionaction expectation
PiRo-0815 1) car::engine[running] DrivingDirection[backward]

2) GearShift[R]
3) wait[until SVSView[TV+RV]]
4) AccelPedal[pressed]

In this example the tester should wait till the camera view "TopView+RearView" is
shown before the accelerator pedal is pressed.



3.3. PiRo::RequirementsTemplate 19

3.3 PiRo::RequirementsTemplate
With the PIRO phrases and verbs all components are available to create a complete and
comprehensible requirement. The PIRO requirement template is based on the IREB
standard<4>.
If a simple function is required the following template should be used

Figure 3.1: RequirementTemplate "Funktion"

If a function is triggered by an event or a particular status, the following template should
be used:

Figure 3.2: RequirementTemplate "Condition"

If more than one condition is necessary they can be combined by "AND" with another
"if" per condition.

To get a high quality requirement the following recommendations should be considered:

• use "the system" instead of the particular component name as it is defined by a
particular attribute anyway



20 3. PiRo Syntax

• highlight the PIRO verbs and phrases by bold text to declare them as "well de-
fined"



4. PiRo Semantic und Translation



22 4. PiRo Semantic und Translation

4.1 The PIRO Phrase Content
Next to the advantages mentioned in chapter "PiRo Syntax" on page 8 the main func-
tionality of PIRO is the translation functionality from the PiRo::phrase to other domain
specific languages. Therefore, a proper database is needed to define the PIRO phrase
and its translation. It is also recommended to use comments, keywords and other proper
descriptions which potentially can support other tool functionality.

1. phrase

2. description of phrase class

3. description of phrase system/subsystem/...

4. description of phrase Entity

5. examples

6. keywords

7. translation tables

7.1 driver instructions

7.2 HiL scripts

7.3 bus signals

7.4 ....

4.2 Translation To Other Languages
We distinguish between two translations

1. PIRO Requirement to PIRO Test Case

2. PIRO Test Case to test platform specific languages (different HiL scripts, driver
instructions, bus signals definitions, ...)



4.2. Translation To Other Languages 23

An automatic translation from requirements to any other language is only possible for
well defined functional requirements. In case of non functional requirements a trans-
lation is only partly possible. Nevertheless also for non functional requirements the
engineer benefits due to the fact that the test case is partly given.



24 4. PiRo Semantic und Translation



5. ISO/IEC/IEEE 29119 conformity

End of 2015 the ISO/IEC/IEEE 29119 Part 5 was published. The standard describes the
Keyword-Driven Testing and discusses the following topics:

• Introduction in Keyword-Driven Testing

• Application of Keyword-Driven Testing

• Roles and Tasks

• Frameworks for Keyword-Driven Testing

• Data Interchange

PIRO covers the proposed syntax and extends it for requirements. With new approaches
like namespaces, systems and classes (the standard only propose to have arguments)
PIRO is able to handle any kind of specification and provides a holistic method for
requirement engineering and test management.
PIRO does not distinguish between low and high level keywords. The motivation is not
clear and from PIRO point of perspective there is no need to do this.
PIRO uses only one abstraction layer because at the moment it is bespoken on system
and software acceptance tests. This is proposed by the standard.



26 5. ISO/IEC/IEEE 29119 conformity

PIRO is compliant with the standard and extends the proposed mechanism. Some parts
like the keyword library are not discussed yet but will be prepared asap.



6. ISO/IEC/IEEE 29148-2011
conformity

The ISO/IEC/IEEE 29148-2011 discusses the entire system and software engineering
topics. As PIRO supports the requirement engineering, only this part of the standard
was consulted. Especially the quality criteria for requirements are considered. The
standard proposes the following characteristics:

1. Necessary

2. Implementation free

3. Feasible

4. Singular

5. Traceable

6. Verifiable

7. Complete

8. Consistent



28 6. ISO/IEC/IEEE 29148-2011 conformity

9. Unambiguous

Especially the last 5 characteristics are supported by PIRO .

PIRO is compliant with the standard.



7. Outlook

7.1 Parameter Usage

Motivation: usage of loops to vary values in test cases
This chapter is not finalized!

7.2 Other Requirements templates

7.3 Automatic Translation of UML diagrams



30 7. Outlook



A. Appendix



32 A. Appendix

A.1 Recommended PiRo Classes
A.1.0.1 General

• param::

• timer::

Every interface of the component to specify should be adressed. For example:

• itf_LVDS:: (for a Low Voltage Differential Signal interface)

• itf_FR:: (for a FlexRay interface)

• itf_CAN:: (for a CAN interface)

• ...

A.1.0.2 UML

For UML the following standard systems are proposed:

State Chart

• state::

• transition::

Class Diagramm

• class::

• aggregation::

• composition::

• generalization::

• ....



A.1. Recommended PiRo Classes 33

A.1.0.3 ECUs in automotive environment

• SCN::

• EVC::





List of Figures

3.1 RequirementTemplate "Funktion" . . . . . . . . . . . . . . . . . . . . 19

3.2 RequirementTemplate "Condition" . . . . . . . . . . . . . . . . . . . . 19





Bibliography

[1] 1, I. J.: IEEE 29148: Systems and software engineering. Life cycle processes.
Requirements engineering. In: IEEE (2011)

[2] 1, I. J.: IEEE 29119: Software and systems engineering - Software testing. In:
IEEE (2013)

[3] BOEHM, B. : Software Engineering Economics. Englewood Cliffs, Prentice-Hall,
1981

[4] CHRIS RUPP, K. K.: Basiswissen Requirements Engineering. 4. dpunkt.verlag
GmbH, 2015

[5] GROUP standish: CHAOS report. (2011)

[6] SCHNEIDER, W. : Deutsch für Profis: Wege zu gutem Stil. 14. Goldmann, Munich,
2015

[7] YOUNG, R. R.: Effective Requirements Practices. Addison-Wesley Longman; Am-
sterdamm, 2001





Index 39

Index

<1>, 8, 37
<2>, 3, 37
<3>, 2, 37
<4>, 2, 19, 37
<5>, 1, 2, 37
<6>, 8, 37
<7>, 2, 37

Action, 17

entity, 14

NASA, 2

Phrase
entity, 14

PiRo
Action, 17
Phrase, 14
Phrase Content, 22
Requirements Template, 19

Requirements Engineering, 2

stakeholder, 1


	Contents
	1 Introduction
	1.1 Motivation
	1.2 Visions and advantages

	2 Basic concepts and elements of PiRo
	2.1 PiRo Test Cases
	2.2 PiRo Requirements
	2.3 PiRo Action Language

	3 PiRo Syntax
	3.1 The PiRo::Phrase
	3.1.1 The Phrases Class
	3.1.2 The Phrases Argument
	3.1.3 The Phrases System and Subsystem
	3.1.4 The maximum Phrase

	3.2 PiRo::Action
	3.2.1 Wait[]

	3.3 PiRo::RequirementsTemplate

	4 PiRo Semantic und Translation
	4.1 The PiRo Phrase Content
	4.2 Translation To Other Languages

	5 ISO/IEC/IEEE 29119 conformity
	6 ISO/IEC/IEEE 29148-2011 conformity
	7 Outlook
	7.1 Parameter Usage
	7.2 Other Requirements templates
	7.3 Automatic Translation of UML diagrams

	A Appendix
	A.1 Recommended PiRo Classes
	A.1.0.1 General
	A.1.0.2 UML
	A.1.0.3 ECUs in automotive environment



	List of figures
	Literaturverzeichnis
	Index

